20 research outputs found

    On location, domination and information retrieval

    Get PDF
    The thesis is divided into two main branches: identifying and locatingdominating codes, and information retrieval. The former topics are motivated by the aim to locate objects in sensor networks (or other similar applications) and the latter one by the need to retrieve information in memories such as DNA data storage systems. Albeit the underlying applications, the study on these topics mainly belongs to discrete mathematics; more specically, to the elds of coding and graph theory. The sensor networks are usually represented by graphs where vertices represent the monitored locations and edges the connections between the locations. Moreover, the locations of the sensors are determined by a code. Furthermore, the desired properties of the sensor network are deeply linked with the properties of the underlying code. The number of errors in reading the data is abundant in the DNA data storage systems. In particular, there can occur more errors than a reasonable error-correcting code can handle. However, this problem is somewhat oset by the possibility to obtain multiple approximations of the same information from the data storage. Hence, the information retrieval process can be modelled by the Levenshtein's channel model, where a message is sent through multiple noisy channels and multiple outputs are received. In the rst two papers of the thesis, we introduce and study the new concepts of self- and solid-locating-dominating codes as a natural analogy to self-identifying codes with respect to locating-dominating codes. The rst paper introduces these new codes and considers them in some graphs such as the Hamming graphs. Then, in the second paper, we broaden our view on the topic by considering graph theoretical questions. We give optimal codes in multiple dierent graph classes and some more general results using concepts such as the Dilworth number and graph complements. The third paper focuses on the q-ary Hamming spaces. In particular, we disprove a conjecture proposed by Goddard and Wash related to identifying codes. In the fourth paper, we return to self- and solid-locating-dominating codes and give optimal codes in some graph classes and consider their densities in innite graphs. In the fth paper, we consider information retrieval in memories; in particular, the Levenshtein's channel model. In the channel model, we transmit some codeword belonging to the binary Hamming space through multiple identical channels. With the help of multiple dierent outputs, we give a list of codewords which may have been sent. In the paper, we study the number of channels required to have a rather small (constant) list size when the properties of the channels, the code and the dimension of the Hamming space are xed. In particular, we give an exact relation between the number of channels and the asymptotic value of the maximum list size.Väitöskirja käsittelee kahta aihetta: identioivia ja paikantavia peittokoodeja sekä tiedon noutamista muistista. Ensimmäisen aiheen motivaationa on objektien paikantaminen sensoriverkoista (sekä muut samankaltaiset sovellukset) ja jälkimmäisen tiedonnouto DNA-muisteista. Näiden aiheiden tutkimus kuuluu diskreettiin matematiikkaan, täsmällisemmin koodaus- ja graa-teoriaan. Sensoriverkkoja kuvataan yleensä graafeilla, joissa solmut esittävät tarkkailtuja kohteita ja viivat yhteyksiä näiden kohteiden välillä. Edelleen sensorien paikat määräytyvät annetun koodin perusteella. Tästä johtuen sensoriverkon halutut ominaisuudet pohjautuvat vahvasti alla olevaan koodiin. Luettaessa tietoa DNA-muisteista tapahtuvien virheiden määrä saattaa olla erittäin suuri; erityisesti suurempi kuin kiinnitetyn virheitä korjaavan koodin korjauskyky. Toisaalta tilanne ei ole aivan näin ongelmallinen, sillä DNA-muisteista voidaan saada useita eri arvioita muistiin tallennetusta tiedosta. Näistä syistä johtuen tietojen noutamista DNA-muisteista voidaan mallintaa käyttäen Levenshteinin kanavamallia. Kanavamallissa yksi viesti lähetetään useiden häiriöisten kanavien kautta ja näin vastaanotetaan useita viestejä (yksi jokaisesta kanavasta). Väitöskirjan kahdessa ensimmäisessä julkaisussa esitellään ja tutkitaan uusia paikantavien peittokoodien luokkia, jotka pohjautuvat aiemmin tutkittuihin itse-identioiviin koodeihin. Ensimmäisessä julkaisussa on esitelty nämä koodiluokat sekä tutkittu niitä joissain graafeissa kuten Hammingin graafeissa. Tämän jälkeen toisessa julkaisussa käsitellään yleisiä graa-teoreettisia kysymyksiä. Julkaisussa esitetään optimaaliset koodit useille graaperheille sekä joitain yleisempiä tuloksia käyttäen mm. Dilworthin lukua sekä graakomplementteja. Kolmas julkaisu keskittyy q-arisiin Hammingin avaruuksiin. Erityisesti julkaisussa todistetaan vääräksi Goddardin ja Washin aiemmin esittämä identioivia koodeja koskeva otaksuma. Neljäs artikkeli käsittelee jo kahdessa ensimmäisessä artikkelissa esiteltyjä paikantavien peittokoodien luokkia. Artikkeli esittää optimaalisia koodeja useille graaperheille sekä käsittelee äärettömiä graafeja. Viides artikkeli käsittelee tiedonnoutoa ja erityisesti Levenshteinin kanavamallia. Kanavamallissa binääriseen Hammingin avaruuteen kuuluva koodisana lähetetään useiden identtisten kanavien läpi. Näistä kanavista vastaanotetaan useita eri arvioita lähetetystä koodisanasta ja rakennetaan lista mahdollisesti lähetetyistä sanoista. Artikkelissa tutkitaan kuinka monta kanavaa tarvitaan, jotta tämän listan koko on pieni (vakio), kun kanavien ominaisuudet, koodi ja Hammingin avaruuden dimensio on kiinnitetty. Erityisesti löydetään täsmällinen suhde kanavien lukumäärän ja asymptoottisesti maksimaalisen listan koon välille

    Bounds and extremal graphs for total dominating identifying codes

    Full text link
    An identifying code CC of a graph GG is a dominating set of GG such that any two distinct vertices of GG have distinct closed neighbourhoods within CC. The smallest size of an identifying code of GG is denoted γID(G)\gamma^{\text{ID}}(G). When every vertex of GG also has a neighbour in CC, it is said to be a total dominating identifying code of GG, and the smallest size of a total dominating identifying code of GG is denoted by γtID(G)\gamma_t^{\text{ID}}(G). Extending similar characterizations for identifying codes from the literature, we characterize those graphs GG of order nn with γtID(G)=n\gamma_t^{\text{ID}}(G)=n (the only such connected graph is P3P_3) and γtID(G)=n1\gamma_t^{\text{ID}}(G)=n-1 (such graphs either satisfy γID(G)=n1\gamma^{\text{ID}}(G)=n-1 or are built from certain such graphs by adding a set of universal vertices, to each of which a private leaf is attached). Then, using bounds from the literature, we remark that any (open and closed) twin-free tree of order nn has a total dominating identifying code of size at most 3n4\frac{3n}{4}. This bound is tight, and we characterize the trees reaching it. Moreover, by a new proof, we show that this bound actually holds for the larger class of all twin-free graphs of girth at least 5. The cycle C8C_8 also attains this bound. We also provide a generalized bound for all graphs of girth at least 5 (possibly with twins). Finally, we relate γtID(G)\gamma_t^{\text{ID}}(G) to the related parameter γID(G)\gamma^{\text{ID}}(G) as well as the location-domination number of GG and its variants, providing bounds that are either tight or almost tight

    Optimal local identifying and local locating-dominating codes

    Full text link
    We introduce two new classes of covering codes in graphs for every positive integer rr. These new codes are called local rr-identifying and local rr-locating-dominating codes and they are derived from rr-identifying and rr-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small nn optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid, and the king grid. We prove that seven out of eight of our constructions have optimal densities

    On regular and new types of codes for location-domination

    Get PDF
    Identifying codes and locating-dominating codes have been designed for locating irregularities in sensor networks. In both cases, we can locate only one irregularity and cannot even detect multiple ones. To overcome this issue, self-identifying codes have been introduced which can locate one irregularity and detect multiple ones. In this paper, we define two new classes of locating-dominating codes which have similar properties. These new locating-dominating codes as well as the regular ones are then more closely studied in the rook’s graphs and binary Hamming spaces.In the rook’s graphs, we present optimal codes, i.e., codes with the smallest possible cardinalities, for regular location-domination as well as for the two new classes. In the binary Hamming spaces, we present lower bounds and constructions for the new classes of codes; in some cases, the constructions are optimal. Moreover, one of the obtained lower bounds improves the bound of Honkala et al. (2004) on codes for locating multiple irregularities.Besides studying the new classes of codes, we also present record-breaking constructions for regular locating-dominating codes. In particular, we present a locating-dominating code in the binary Hamming space of length 11 with 320 vertices improving the earlier bound of 352; the best known lower bound for such code is 309 by Honkala et al. (2004).</p

    On Levenshtein’s Channel and List Size in Information Retrieval

    Get PDF

    Proceedings of the Fourth Russian Finnish Symposium on Discrete Mathematics

    Get PDF

    2022 IEEE International Symposium on Information Theory (ISIT)

    Get PDF

    Locating-dominating sets: From graphs to oriented graphs

    Get PDF
    A locating-dominating set of an undirected graph is a subset of vertices S such that S is dominating and for every u, v is not an element of S, the neighbourhood of u and v on S are distinct (i.e. N(u) & cap; S &NOTEQUexpressionL; N(v) & cap; S). Locating-dominating sets have received a considerable attention in the last decades. In this paper, we consider the oriented version of the problem. A locating-dominating set in an oriented graph is a set S such that for each w is an element of V \ S, N-(w) & cap; S &NOTEQUexpressionL; Phi and for each pair of distinct vertices u, v is an element of V \ S, N-(u) & cap; S &NOTEQUexpressionL; N-(v) & cap; S. We consider the following two parameters. Given an undirected graph G, we look for (gamma)over the arrow(LD) (G) ((gamma)over the arrow(LD) (G)) which is the size of the smallest (largest) optimal locating-dominating set over all orientations of G. In particular, if D is an orientation of G, then (gamma)over the arrow(LD)(G) = gamma(LD)(G) and some for which (gamma)over the arrow(LD)(G) = alpha(G). Finally, we show that for many graph classes (gamma)over the arrow(LD)(G) is polynomial on n but we leave open the question whether there exist graphs with (gamma)over the arrow(LD)(G) is an element of O (log n). (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).</p
    corecore